7.431 e 9.582 non sono primi tra loro (coprimi)... se:
- Se c'è almeno un numero diverso da 1 che divide i due numeri senza resto. O...
- O, in altre parole - se il loro massimo comune divisore, mcd, non è 1.
Calcola il massimo comune divisore, mcd, dei numeri
Metodo 1. La scomposizione in fattori primi (la fattorizzazione in numeri primi):
La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.
7.431 = 3 × 2.477
7.431 non è un numero primo, è un numero composto.
9.582 = 2 × 3 × 1.597
9.582 non è un numero primo, è un numero composto.
- I numeri che sono divisibili solo per 1 e per se stessi sono detti numeri primi. Un numero primo ha solo due divisori: 1 e se stesso.
- Un numero composto è un numero naturale che ha almeno un fattore diverso da 1 e se stesso.
Calcola il massimo comune divisore, mcd:
Moltiplica tutti i fattori primi comuni dei due numeri, presi dai loro più piccoli esponenti.
Passaggio 1. Dividi il numero più grande per quello più piccolo:
9.582 : 7.431 = 1 + 2.151
Passaggio 2. Dividi il numero più piccolo per il resto dell'operazione precedente:
7.431 : 2.151 = 3 + 978
Passaggio 3. Dividi il resto del passaggio 1 per il resto del passaggio 2:
2.151 : 978 = 2 + 195
Passaggio 4. Dividi il resto del passaggio 2 per il resto del passaggio 3:
978 : 195 = 5 + 3
Passaggio 5. Dividi il resto del passaggio 3 per il resto del passaggio 4:
195 : 3 = 65 + 0
A questo punto, il resto è zero, quindi ci fermiamo:
3 è il numero che stavamo cercando, l'ultimo resto diverso da zero.
Questo è il massimo comune divisore.
mcd (7.431; 9.582) = 3 ≠ 1
I numeri 7.431 e 9.582 sono primi tra loro (coprimi, relativamente primi)? No.
mcd (7.431; 9.582) = 3 ≠ 1