1.352.736: Calcola tutti i divisori e i fattori primi del numero 1.352.736

I divisori del numero 1.352.736

1. Effettuare la scomposizione del numero 1.352.736 in fattori primi:

La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.


1.352.736 = 25 × 32 × 7 × 11 × 61
1.352.736 non è un numero primo ma un numero composto.


* I numeri naturali che sono divisibili solo per 1 e per se stessi sono detti numeri primi. Un numero primo ha esattamente due divisori: 1 e il numero stesso.
* Un numero composto è un numero naturale che ha almeno un divisore diverso da 1 e se stesso.


2. Moltiplica i fattori primi del numero 1.352.736

Moltiplicare i fattori primi coinvolti nella scomposizione in fattori primi (la fattorizzazione in numeri primi) del numero, in tutte le loro combinazioni uniche, che danno risultati diversi.


Considera anche gli esponenti di questi fattori primi.

Aggiungi anche 1 all'elenco dei divisori. Tutti i numeri sono divisibili di 1.


Tutti i divisori sono elencati di seguito, in ordine crescente

L'elenco dei divisori:

né primo né composto = 1
fattore primo = 2
fattore primo = 3
22 = 4
2 × 3 = 6
fattore primo = 7
23 = 8
32 = 9
fattore primo = 11
22 × 3 = 12
2 × 7 = 14
24 = 16
2 × 32 = 18
3 × 7 = 21
2 × 11 = 22
23 × 3 = 24
22 × 7 = 28
25 = 32
3 × 11 = 33
22 × 32 = 36
2 × 3 × 7 = 42
22 × 11 = 44
24 × 3 = 48
23 × 7 = 56
fattore primo = 61
32 × 7 = 63
2 × 3 × 11 = 66
23 × 32 = 72
7 × 11 = 77
22 × 3 × 7 = 84
23 × 11 = 88
25 × 3 = 96
32 × 11 = 99
24 × 7 = 112
2 × 61 = 122
2 × 32 × 7 = 126
22 × 3 × 11 = 132
24 × 32 = 144
2 × 7 × 11 = 154
23 × 3 × 7 = 168
24 × 11 = 176
3 × 61 = 183
2 × 32 × 11 = 198
25 × 7 = 224
3 × 7 × 11 = 231
22 × 61 = 244
22 × 32 × 7 = 252
23 × 3 × 11 = 264
25 × 32 = 288
22 × 7 × 11 = 308
24 × 3 × 7 = 336
25 × 11 = 352
2 × 3 × 61 = 366
22 × 32 × 11 = 396
7 × 61 = 427
2 × 3 × 7 × 11 = 462
23 × 61 = 488
23 × 32 × 7 = 504
24 × 3 × 11 = 528
32 × 61 = 549
23 × 7 × 11 = 616
11 × 61 = 671
25 × 3 × 7 = 672
32 × 7 × 11 = 693
22 × 3 × 61 = 732
23 × 32 × 11 = 792
2 × 7 × 61 = 854
22 × 3 × 7 × 11 = 924
24 × 61 = 976
24 × 32 × 7 = 1.008
25 × 3 × 11 = 1.056
2 × 32 × 61 = 1.098
Questo elenco continua di seguito...

... Questo elenco continua dall'alto
24 × 7 × 11 = 1.232
3 × 7 × 61 = 1.281
2 × 11 × 61 = 1.342
2 × 32 × 7 × 11 = 1.386
23 × 3 × 61 = 1.464
24 × 32 × 11 = 1.584
22 × 7 × 61 = 1.708
23 × 3 × 7 × 11 = 1.848
25 × 61 = 1.952
3 × 11 × 61 = 2.013
25 × 32 × 7 = 2.016
22 × 32 × 61 = 2.196
25 × 7 × 11 = 2.464
2 × 3 × 7 × 61 = 2.562
22 × 11 × 61 = 2.684
22 × 32 × 7 × 11 = 2.772
24 × 3 × 61 = 2.928
25 × 32 × 11 = 3.168
23 × 7 × 61 = 3.416
24 × 3 × 7 × 11 = 3.696
32 × 7 × 61 = 3.843
2 × 3 × 11 × 61 = 4.026
23 × 32 × 61 = 4.392
7 × 11 × 61 = 4.697
22 × 3 × 7 × 61 = 5.124
23 × 11 × 61 = 5.368
23 × 32 × 7 × 11 = 5.544
25 × 3 × 61 = 5.856
32 × 11 × 61 = 6.039
24 × 7 × 61 = 6.832
25 × 3 × 7 × 11 = 7.392
2 × 32 × 7 × 61 = 7.686
22 × 3 × 11 × 61 = 8.052
24 × 32 × 61 = 8.784
2 × 7 × 11 × 61 = 9.394
23 × 3 × 7 × 61 = 10.248
24 × 11 × 61 = 10.736
24 × 32 × 7 × 11 = 11.088
2 × 32 × 11 × 61 = 12.078
25 × 7 × 61 = 13.664
3 × 7 × 11 × 61 = 14.091
22 × 32 × 7 × 61 = 15.372
23 × 3 × 11 × 61 = 16.104
25 × 32 × 61 = 17.568
22 × 7 × 11 × 61 = 18.788
24 × 3 × 7 × 61 = 20.496
25 × 11 × 61 = 21.472
25 × 32 × 7 × 11 = 22.176
22 × 32 × 11 × 61 = 24.156
2 × 3 × 7 × 11 × 61 = 28.182
23 × 32 × 7 × 61 = 30.744
24 × 3 × 11 × 61 = 32.208
23 × 7 × 11 × 61 = 37.576
25 × 3 × 7 × 61 = 40.992
32 × 7 × 11 × 61 = 42.273
23 × 32 × 11 × 61 = 48.312
22 × 3 × 7 × 11 × 61 = 56.364
24 × 32 × 7 × 61 = 61.488
25 × 3 × 11 × 61 = 64.416
24 × 7 × 11 × 61 = 75.152
2 × 32 × 7 × 11 × 61 = 84.546
24 × 32 × 11 × 61 = 96.624
23 × 3 × 7 × 11 × 61 = 112.728
25 × 32 × 7 × 61 = 122.976
25 × 7 × 11 × 61 = 150.304
22 × 32 × 7 × 11 × 61 = 169.092
25 × 32 × 11 × 61 = 193.248
24 × 3 × 7 × 11 × 61 = 225.456
23 × 32 × 7 × 11 × 61 = 338.184
25 × 3 × 7 × 11 × 61 = 450.912
24 × 32 × 7 × 11 × 61 = 676.368
25 × 32 × 7 × 11 × 61 = 1.352.736

La risposta finale:
(scorrere verso il basso)

1.352.736 ha 144 divisori:
1; 2; 3; 4; 6; 7; 8; 9; 11; 12; 14; 16; 18; 21; 22; 24; 28; 32; 33; 36; 42; 44; 48; 56; 61; 63; 66; 72; 77; 84; 88; 96; 99; 112; 122; 126; 132; 144; 154; 168; 176; 183; 198; 224; 231; 244; 252; 264; 288; 308; 336; 352; 366; 396; 427; 462; 488; 504; 528; 549; 616; 671; 672; 693; 732; 792; 854; 924; 976; 1.008; 1.056; 1.098; 1.232; 1.281; 1.342; 1.386; 1.464; 1.584; 1.708; 1.848; 1.952; 2.013; 2.016; 2.196; 2.464; 2.562; 2.684; 2.772; 2.928; 3.168; 3.416; 3.696; 3.843; 4.026; 4.392; 4.697; 5.124; 5.368; 5.544; 5.856; 6.039; 6.832; 7.392; 7.686; 8.052; 8.784; 9.394; 10.248; 10.736; 11.088; 12.078; 13.664; 14.091; 15.372; 16.104; 17.568; 18.788; 20.496; 21.472; 22.176; 24.156; 28.182; 30.744; 32.208; 37.576; 40.992; 42.273; 48.312; 56.364; 61.488; 64.416; 75.152; 84.546; 96.624; 112.728; 122.976; 150.304; 169.092; 193.248; 225.456; 338.184; 450.912; 676.368 e 1.352.736
di cui 5 fattori primi: 2; 3; 7; 11 e 61

Un modo rapido per trovare i divisori di un numero è scomporlo in fattori primi.


Quindi moltiplica i fattori primi e i loro esponenti, se presenti, in tutte le loro diverse combinazioni.


Calcola tutti i divisori (e i fattori primi) dei numeri dati

Come calcolare (trovare) tutti i divisori (e i fattori primi) di un numero:

Esegui la scomposizione del numero in fattori primi (fattorizzazione in numeri primi). Quindi moltiplica i suoi fattori primi in tutte le loro combinazioni uniche, che danno risultati diversi.

Per calcolare i divisori comuni (e i fattori primi) di due numeri:

I divisori comuni di due numeri sono tutti i divisori del massimo comune divisore, mcd.

Calcola il massimo comune divisore dei due numeri, mcd

Scomporre l'MCD in fattori primi. Quindi moltiplica i suoi fattori primi in tutte le loro combinazioni uniche, che danno risultati diversi.

Gli ultimi 10 insiemi di divisori calcolati: di un numero o divisori comuni di due numeri

Divisori. Divisori comuni. Il massimo comune divisore, mcd

  • Se il numero "t" è un divisore del numero "a", allora nella scomposizione in fattori primi (la fattorizzazione in numeri primi) di "t" incontreremo solo i fattori primi che sono anche coinvolti nella fattorizzazione in primi numeri di "a".
  • Se sono coinvolti esponenti, il valore massimo di un esponente per qualsiasi base di una potenza che si trova nella scomposizione in fattori primi di "t" è al massimo uguale all'esponente della stessa base coinvolta nella scomposizione in fattori primi di "a".
  • Nota: 23 = 2 × 2 × 2 = 8. Il simbolo 23 rappresenta l'operazione di elevamento a potenza. Diciamo 2 alla 3, o 2 elevato alla terza potenza. In questo esempio, 3 è l'esponente e 2 è la base. L'esponente indica quante volte la base viene moltiplicata per se stessa. 23 è la potenza e 8 è il valore della potenza (il risultato dell'operazione di elevamento a potenza).
  • Ad esempio, 12 è un divisore di 120 - il resto è zero quando si divide 120 per 12.
  • Vediamo la scomposizione in fattori primi di entrambi i numeri e notiamo le basi e gli esponenti che si verificano nella scomposizione in fattori primi di entrambi i numeri:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 contains all the prime factors of 12, and all its bases' exponents are higher than those of 12.
  • Se "t" è un divisore comune di "a" e "b", allora la scomposizione in fattori primi di "t" contiene solo i fattori primi comuni coinvolti nella scomposizione in fattori primi sia di "a" che di "b ".
  • Se sono coinvolti esponenti, il valore massimo di un esponente per qualsiasi base di una potenza che si trova nella scomposizione in fattori primi di "t" è al massimo uguale al minimo degli esponenti della stessa base che è coinvolta in la scomposizione in fattori primi sia di "a" che di "b".
  • Ad esempio, 12 è il comun divisore di 48 e 360.
  • Il resto è zero quando si divide 48 o 360 per 12.
  • Qui ci sono la scomposizione in fattori primi dei tre numeri, 12, 48 e 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Si noti che 48 e 360 hanno più divisori: 2, 3, 4, 6, 8, 12, 24. Tra questi, 24 è il massimo comune divisore, mcd, di 48 e 360.
  • Il massimo comun divisore, mcd, dei due numeri, "a" e "b", è il prodotto di tutti i fattori primi comuni coinvolti nella scomposizione in fattori primi sia di "a" che di "b", presi dal esponenti più bassi (potenze).
  • In base a questa regola, il massimo comun divisore, mcd, viene calcolato su più numeri, come mostrato nell'esempio seguente...
  • mcd (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • I fattori primi comuni sono:
  • 2 - il suo esponente più basso (potenza) è: min.(2; 3; 4) = 2
  • 3 - il suo esponente più basso (potenza) è: min.(2; 2; 2) = 2
  • mcd (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Numeri che sono primi tra loro, relativamente primi:
  • Se due numeri "a" e "b" non hanno altri divisori comuni che 1, mcd (a; b) = 1, allora i numeri "a" e "b" sono chiamati primi tra loro (o coprimi).
  • Divisori del mcd
  • Se "a" e "b" non sono primi tra loro, allora ogni comun divisore di "a" e "b" è anche un divisore del massimo comun divisore, mcd, di "a" e "b".