I divisori comuni di 1.000.002.387 e 999.999.999.967: quali sono tutti i loro divisori?

Quali sono tutti i divisori comuni di 1.000.002.387 e 999.999.999.967? Calcola divisore per divisore

I divisori comuni dei numeri 1.000.002.387 e 999.999.999.967 sono tutti i divisori del loro 'massimo comune divisore', MCD


Calcola il massimo comune divisore.
Segui i due passaggi seguenti.

1. Eseguiamo la scomposizione in fattori primi dei due numeri:

La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.


1.000.002.387 = 3 × 59 × 1.499 × 3.769
1.000.002.387 non è un numero primo ma composto.


999.999.999.967 = 32.983 × 30.318.649
999.999.999.967 non è un numero primo ma composto.


  • I numeri naturali che sono divisibili solo per 1 e per se stessi sono detti numeri primi. Un numero primo ha esattamente due divisori: 1 e se stesso.
  • Esempi di numeri primi: 2 (divisori 1, 2), 3 (divisori 1, 3), 5 (divisori 1, 5), 7 (divisori 1, 7), 11 (divisori 1, 11), 13 (divisori 1, 13), ...
  • Un numero composto è un numero naturale che ha almeno un divisore diverso da 1 e se stesso. Quindi non è né un numero primo né 1.
  • Esempi di numeri composti: 4 (ha 3 divisori: 1, 2, 4), 6 (ha 4 divisori: 1, 2, 3, 6), 8 (ha 4 divisori: 1, 2, 4, 8), 9 (ha 3 divisori: 1, 3, 9), 10 (ha 4 divisori: 1, 2, 5, 10), 12 (ha 6 divisori: 1, 2, 3, 4, 6, 12), ...
  • » Calcolatore online. Controlla se un numero è primo o meno. La scomposizione in fattori primi (la fattorizzazione in numeri primi) dei numeri composti



2. Calcola il massimo comune divisore, mcd:

Moltiplica tutti i fattori primi comuni, presi dai loro più piccoli esponenti.
Ma i due numeri non hanno fattori primi comuni.


mcd (1.000.002.387; 999.999.999.967) = 1
Numeri primi tra loro (coprimi, relativamente primi);




1 è solo divisibile da solo. Il numero 1 ha un solo divisore: 1.

1.000.002.387 e 999.999.999.967 hanno 1 divisore comune:

né primo né composto = 1

Divisori. Divisori comuni. Il massimo comune divisore, mcd

  • Se il numero "t" è un divisore del numero "a", allora nella scomposizione in fattori primi (la fattorizzazione in numeri primi) di "t" incontreremo solo i fattori primi che sono anche coinvolti nella fattorizzazione in primi numeri di "a".
  • Se sono coinvolti esponenti, il valore massimo di un esponente per qualsiasi base di una potenza che si trova nella scomposizione in fattori primi di "t" è al massimo uguale all'esponente della stessa base coinvolta nella scomposizione in fattori primi di "a".
  • Nota: 23 = 2 × 2 × 2 = 8. Il simbolo 23 rappresenta l'operazione di elevamento a potenza. Diciamo 2 alla 3, o 2 elevato alla terza potenza. In questo esempio, 3 è l'esponente e 2 è la base. L'esponente indica quante volte la base viene moltiplicata per se stessa. 23 è la potenza e 8 è il valore della potenza (il risultato dell'operazione di elevamento a potenza).
  • Ad esempio, 12 è un divisore di 120 - il resto è zero quando si divide 120 per 12.
  • Vediamo la scomposizione in fattori primi di entrambi i numeri e notiamo le basi e gli esponenti che si verificano nella scomposizione in fattori primi di entrambi i numeri:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 contains all the prime factors of 12, and all its bases' exponents are higher than those of 12.
  • Se "t" è un divisore comune di "a" e "b", allora la scomposizione in fattori primi di "t" contiene solo i fattori primi comuni coinvolti nella scomposizione in fattori primi sia di "a" che di "b ".
  • Se sono coinvolti esponenti, il valore massimo di un esponente per qualsiasi base di una potenza che si trova nella scomposizione in fattori primi di "t" è al massimo uguale al minimo degli esponenti della stessa base che è coinvolta in la scomposizione in fattori primi sia di "a" che di "b".
  • Ad esempio, 12 è il comun divisore di 48 e 360.
  • Il resto è zero quando si divide 48 o 360 per 12.
  • Qui ci sono la scomposizione in fattori primi dei tre numeri, 12, 48 e 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Si noti che 48 e 360 hanno più divisori: 2, 3, 4, 6, 8, 12, 24. Tra questi, 24 è il massimo comune divisore, mcd, di 48 e 360.
  • Il massimo comun divisore, mcd, dei due numeri, "a" e "b", è il prodotto di tutti i fattori primi comuni coinvolti nella scomposizione in fattori primi sia di "a" che di "b", presi dal esponenti più bassi (potenze).
  • In base a questa regola, il massimo comun divisore, mcd, viene calcolato su più numeri, come mostrato nell'esempio seguente...
  • mcd (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • I fattori primi comuni sono:
  • 2 - il suo esponente più basso (potenza) è: min.(2; 3; 4) = 2
  • 3 - il suo esponente più basso (potenza) è: min.(2; 2; 2) = 2
  • mcd (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Numeri che sono primi tra loro, relativamente primi:
  • Se due numeri "a" e "b" non hanno altri divisori comuni che 1, mcd (a; b) = 1, allora i numeri "a" e "b" sono chiamati primi tra loro (o coprimi).
  • Divisori del mcd
  • Se "a" e "b" non sono primi tra loro, allora ogni comun divisore di "a" e "b" è anche un divisore del massimo comun divisore, mcd, di "a" e "b".