MCM tra 76.576.196 e 459.459.492: il minimo comune multiplo dei numeri. Qual è il più piccolo multiplo di 76.576.196 e 459.459.492? Il minimo comune denominatore. Calcola altri multipli partendo dal MCM

Qual è mcm tra 76.576.196 e 459.459.492, il minimo comune multiplo dei numeri (il più piccolo multiplo). Il denominatore comune. Altri multipli


Metodi utilizzati: 1. La scomposizione in fattori primi. 2. L'algoritmo di Euclide

Cosa significa il minimo comune multiplo (mcm)?

  • Il minimo comune multiplo (mcm) di due numeri è il più piccolo numero naturale diverso da zero che sia multiplo di entrambi i numeri.
  • Ad esempio, il mcm di 2 e 3 è 6.
  • Di seguito vedrai come viene calcolato con due metodi.
  • Altri multipli di due numeri

  • Una volta calcolato il mcm di due numeri, puoi trovare altri multipli dei due numeri moltiplicando il mcm per qualsiasi altro numero naturale.
  • Ad esempio, il mcm di 2 e 3 = 6, quindi i seguenti numeri sono anche multipli dei numeri 2 e 3: 6 × 0 = 0; 6 × 2 = 12; 6 × 3 = 18; ... e così via.
  • Esiste un numero infinito di multipli di due numeri qualsiasi.
  • Il denominatore comune di due frazioni

  • Calcolare il denominatore comune di due frazioni equivale a calcolare il minimo comune multiplo dei loro denominatori.
  • Ad esempio: per sommare due frazioni, 1/2 e 1/3, è necessario che abbiano lo stesso denominatore, preferibilmente il più piccolo possibile. Bene, questo denominatore comune è 6, il minimo comune multiplo di 2 e 3: 1/2 + 1/3 = (3 × 1) / 6 + (2 × 1) / 6 = 3/6 + 2/6 = 5/6
  • » Calcolatrice per addizionare frazioni
  • » Calcolatrice per sottrarre frazioni
  • » Calcolatrice per confrontare frazioni

mcm (76.576.196; 459.459.492) = ?

Metodo 1. La scomposizione in fattori primi (fattorizzazione in numeri primi):

La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.


76.576.196 = 22 × 907 × 21.107
76.576.196 non è un numero primo ma composto.


459.459.492 = 22 × 3 × 1.277 × 29.983
459.459.492 non è un numero primo ma composto.



Calcola il minimo comune multiplo, mcm:

Moltiplica tutti i fattori primi dei due numeri. Se ci sono fattori primi comuni, vengono presi solo quelli con gli esponenti più grandi.


Il minimo comune multiplo:
mcm (76.576.196; 459.459.492) = 22 × 3 × 907 × 1.277 × 21.107 × 29.983 = 8.795.915.028.363.108
I due numeri hanno fattori primi comuni

Metodo 2. L'algoritmo di Euclide:

1. Calcola il massimo comune divisore:

  • Questo algoritmo prevede il processo di divisione dei numeri e calcolo dei resti.
  • 'a' e 'b' sono i due numeri naturali, 'a' >= 'b'.
  • Dividi 'a' per 'b' e ottieni il resto dell'operazione, 'r'.
  • Se 'r' = 0, STOP. 'b' = il mcd di 'a' e 'b'.
  • Altrimenti: sostituire ('a' di 'b') e ('b' di 'r'). Torna al passaggio sopra.


Passaggio 1. Dividi il numero più grande per quello più piccolo:
459.459.492 : 76.576.196 = 6 + 2.316
Passaggio 2. Dividi il numero più piccolo per il resto dell'operazione precedente:
76.576.196 : 2.316 = 33.063 + 2.288
Passaggio 3. Dividi il resto del passaggio 1 per il resto del passaggio 2:
2.316 : 2.288 = 1 + 28
Passaggio 4. Dividi il resto del passaggio 2 per il resto del passaggio 3:
2.288 : 28 = 81 + 20
Passaggio 5. Dividi il resto del passaggio 3 per il resto del passaggio 4:
28 : 20 = 1 + 8
Passaggio 6. Dividi il resto del passaggio 4 per il resto del passaggio 5:
20 : 8 = 2 + 4
Passaggio 7. Dividi il resto del passaggio 5 per il resto del passaggio 6:
8 : 4 = 2 + 0
A questo punto, il resto è zero, quindi ci fermiamo:
4 è il numero che stavamo cercando, l'ultimo resto diverso da zero.
Questo è il massimo comune divisore.


Il massimo comune divisore:
mcd (76.576.196; 459.459.492) = 4


2. Calcola il minimo comune multiplo:

Il minimo comune multiplo, Formula:

mcm (a; b) = (a × b) / mcd (a; b)


mcm (76.576.196; 459.459.492) =


(76.576.196 × 459.459.492) / mcd (76.576.196; 459.459.492) =


35.183.660.113.452.432 / 4 =


8.795.915.028.363.108



Il minimo comune multiplo:
mcm (76.576.196; 459.459.492) = 8.795.915.028.363.108 = 22 × 3 × 907 × 1.277 × 21.107 × 29.983

Scorri verso il basso per determinare altri multipli...

Altri multipli a partire dal MCM

  • Ogni multiplo comune di due numeri è anche un multiplo del minimo comune multiplo, mcm, di due numeri.
  • Anche i seguenti numeri sono multipli dei numeri 76.576.196 e 459.459.492:

    • 8.795.915.028.363.108 × 0 = 0

    • 8.795.915.028.363.108 × 2 = 17.591.830.056.726.216 

    • 8.795.915.028.363.108 × 3 = 26.387.745.085.089.324

    • ...

  • Esistono infiniti multipli di due numeri qualsiasi.

Come verificare se un numero è un multiplo comune di due numeri?

  • Dopo aver calcolato il mcm, dividere il numero da verificare per il mcm. Se il resto di questa divisione è zero, il numero da verificare è un multiplo degli altri due numeri. Se il resto è diverso da zero, il numero da verificare non è un multiplo.
  • Ad esempio: il mcm dei numeri 4 e 6 è 2 × 2 × 3 = 12.
  • Domanda: 36 è un multiplo dei numeri 4 e 6? Risposta: 36 ÷ 12 = 3 e il resto è 0, quindi 36 è un multiplo di 4 e 6.
  • Domanda: 28 è un multiplo dei numeri 4 e 6? Risposta: 28 ÷ 12 = 2 e il resto è 4, quindi 28 non è un multiplo di 4 e 6.

Perché abbiamo bisogno del minimo comune multiplo?

  • Per sommare, sottrarre o confrontare frazioni, devi prima calcolare le frazioni equivalenti che hanno lo stesso denominatore. Questo comune denominatore non è altro che il minimo comune multiplo dei denominatori delle frazioni.
  • Per definizione, il minimo comune multiplo tra due numeri è il più piccolo numero naturale che è: (1) maggiore di 0 e (2) un multiplo di entrambi i numeri.




Il minimo comune multiplo (mcm). Cos'è e come calcolarlo.

  • Il numero 60 è un multiplo comune dei numeri 6 e 15 perché 60 è un multiplo di 6 (60 = 6 × 10) e anche un multiplo di 15 (60 = 15 × 4).
  • Ci sono infiniti multipli comuni di 6 e 15.
  • Se il numero "v" è un multiplo dei numeri "a" e "b", allora tutti i multipli di "v" sono multipli di "a" e "b".
  • I multipli comuni di 6 e 15 sono i numeri 30, 60, 90, 120 e così via.
  • Di questi, 30 è il più piccolo, 30 è il minimo comune multiplo (mcm) tra 6 e 15.
  • Nota: Scomposizione in fattori primi, o fattorizzazione in numeri primi, è un procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.
  • Se e = mcm (a, b), allora la scomposizione in fattori primi (la fattorizzazione in numeri primi) di "e" deve contenere tutti i fattori primi coinvolti nella scomposizione in fattori primi di "a" e "b" preso dai massimi esponenti (potenze).
  • Esempio di calcolo del minimo comune multiplo, mcm, tra tre numeri:
  • 40 = 23 × 5
  • 36 = 22 × 32
  • 126 = 2 × 32 × 7
  • mcm (40, 36, 126) = 23 × 32 × 5 × 7 = 2.520
  • Nota: 23 = 2 × 2 × 2 = 8. Il simbolo 23 rappresenta l'operazione di elevamento a potenza. Diciamo 2 alla 3, o 2 elevato alla terza potenza. In questo esempio, 3 è l'esponente e 2 è la base. L'esponente indica quante volte la base viene moltiplicata per se stessa. 23 è la potenza e 8 è il valore della potenza (il risultato dell'operazione di elevamento a potenza).
  • Un altro esempio di calcolo del minimo comune multiplo, mcm:
  • 938 = 2 × 7 × 67
  • 982 = 2 × 491
  • 743 = è un numero primo e non può essere scomposto in altri fattori primi
  • mcm (938, 982, 743) = 2 × 7 × 67 × 491 × 743 = 342.194.594
  • Se due o più numeri non hanno fattori comuni (sono primi tra loro, sono numeri coprimi), allora il loro multiplo minimo comune viene calcolato semplicemente moltiplicando i numeri.
  • Esempio:
  • 6 = 2 × 3
  • 35 = 5 × 7
  • mcm (6, 35) = 2 × 3 × 5 × 7 = 6 × 35 = 210