Controlla, il numero 510 è divisibile per 4? Calcolatrice online

Il numero 510 è divisibile per 4? Controllo della divisibilità utilizzando due metodi: divisione dei numeri e scomposizione in fattori primi

Metodo 1. La divisione dei due numeri:

Un numero naturale 'A' potrebbe essere divisibile per un altro numero 'B' se dopo aver diviso 'A' per 'B' il resto fosse zero.


510 sarebbe divisibile per 4 solo se ci fosse un numero naturale 'n', in modo che:
510 = 'n' × 4


Quando si dividono i due numeri il resto non è zero:


510 : 4 = 127 + resto 2


Non esiste un numero naturale 'n' tale che: 510 = 'n' × 4.


Il numero 510 non è divisibile per 4.

Nota:

1) Se sottrai il resto dell'operazione precedente dal numero originale, 510, il risultato è un numero che è divisibile per il secondo numero, 4:


510 - 2 = 508


508 = 127 × 4


2) Se sottrai il resto dell'operazione precedente dal secondo numero, 4, e poi sommi il risultato al numero originale, 510, ottieni un numero che è divisibile per il secondo numero:

4 - 2 = 2


510 + 2 = 512.


512 = 128 × 4.


Il numero 510 non è divisibile per 4

Quando i due numeri sono divisi, il resto non è zero.

Metodo 2. La scomposizione in fattori primi (la fattorizzazione in numeri primi) dei numeri

Quando due numeri sono divisibili?

Il numero 510 sarebbe divisibile per 4 solo se la sua scomposizione in fattori primi (la fattorizzazione in numeri primi) contenesse tutti i fattori primi che compaiono nella scomposizione in fattori primi del numero 4.


La scomposizione in fattori primi (la fattorizzazione in numeri primi) dei numeri:

La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.


510 = 2 × 3 × 5 × 17
510 non è un numero primo ma un numero composto.


4 = 22
4 non è un numero primo ma un numero composto.



Il numero 510 non è divisibile per 4.

La scomposizione in fattori primi del numero 510 non contiene (tutti) i fattori primi che si verificano nella scomposizione in fattori primi di 4.

* I numeri naturali che sono divisibili solo per 1 e per se stessi sono detti numeri primi. Un numero primo ha esattamente due divisori: 1 e se stesso.
* Un numero composto è un numero naturale che ha almeno un divisore diverso da 1 e se stesso.



1. Qual è la divisibilità dei numeri? 2. Regole di divisibilità. 3. Calcolo dei divisori. 4. Metodi rapidi per determinare se un numero è divisibile per un altro o meno.

  • 1. Divisibilità:

  • Un numero si dice divisibile per un altro se dopo aver diviso i due numeri il resto dell'operazione è zero.
  • Esempio: Dividiamo due numeri diversi: 12 e 15, per 4.
  • Quando si divide 12 per 4, il quoziente è 3 e il resto dell'operazione è zero.
  • Ma quando dividiamo 15 per 4, il quoziente è 3 e l'operazione lascia un resto di 3.
  • Diciamo che il numero 12 è divisibile per 4 e 15 non è divisibile per 4.
  • Diciamo anche che 4 è un divisore di 12, ma non un divisore di 15.
  • Diciamo che il numero "a" è divisibile per "b", se esiste un numero intero "n", tale che:
  • a = n × b.
  • Il numero "b" è chiamato divisore di "a" ("n" è anche un divisore di "a").
  • 2. Alcune regole di divisibilità:

  • 0 è divisibile per qualsiasi numero diverso da se stesso.
  • 1 è un divisore di ogni numero.
  • Qualsiasi numero "a", diverso da zero, è divisibile almeno per 1 e per se stesso.
  • Numeri primi: Un numero che è divisibile solo per 1 e per se stesso è anche chiamato numero primo.
  • Numeri primi tra loro (numeri coprimi): Se il massimo comun divisore di due numeri, "m" e "n", il mcd (m; n) = 1 - allora significa che i due numeri sono primi tra loro (numeri coprimi), in altre parole non hanno divisore diverso da 1. Se un numero "a" è divisibile per questi due numeri coprimi, "m" e "n", allora anche "a" è divisibile per il loro prodotto, (m × n).
    • Esempio:
    • Il numero 84 è divisibile per i coprimi numeri 4 e 3 ed è divisibile anche per il loro prodotto: 4 × 3 = 12.
    • Questo è vero solo quando i due divisori, 3 e 4 nel nostro caso, sono numeri coprimi.
  • 3. Calcolo dei divisori:

  • Calcolare i divisori di un numero è molto utile quando si semplificano le frazioni (riducendo le frazioni ai minimi termini).
  • Le regole stabilite per trovare i divisori si basano sul fatto che i numeri sono scritti nel sistema decimale:
  • Multipli di 10 sono divisibili per 2 e 5, perché 10 è divisibile per 2 e 5
  • Multipli di 100 sono divisibili per 4 e 25, perché 100 è divisibile per 4 e 25
  • Multipli di 1.000 sono divisibili per 8, perché 1.000 è divisibile per 8.
  • Tutte le potenze di 10, divise per 3, o 9, hanno resto uguale a 1.
  • A causa delle regole delle operazioni con i resti, abbiamo i seguenti resti quando dividiamo i numeri per 3 o 9:
  • 600 ha resto uguale a 6 =1 × 6 (1 per ogni 100)
  • 240 = 2 × 100 + 4 × 10, allora il resto sarà uguale a 2 × 1 + 4 × 1 = 6
  • Quando un numero è diviso per 3 o 9, il resto è uguale a quello che ottieni dividendo la somma delle cifre di quel numero per 3 o 9:
  • 7.309 ha la somma delle sue cifre: 7 + 3 + 0 + 9 = 19, che è diviso con resto per 3 o 9. Quindi 7.309 non è divisibile né per 3 né per 9.
  • Tutti i poteri pari di 10, come 102 = 100, 104 = 10.000, 106 = 1.000.000, ecc., diviso per 11 ha resto uguale a 1.
  • Tutte le potenze dispari di 10, come 101 = 10, 103 = 1.000, 105 = 100.000, 107 = 10.000.000, ecc., diviso per 11 ha resto uguale a 10. In questo caso, un numero è divisibile per 11 se la differenza tra la somma delle sue cifre di posto dispari e la somma delle sue cifre di posto pari risulta in un numero che è divisibile per 11.
  • Come viene calcolata la differenza tra la somma delle sue cifre di posto dispari e la somma delle sue cifre di posto pari - è mostrato nell'esempio seguente.
  • Ad esempio, per il numero: 85.976: 6 + 9 + 8 = 23, 7 + 5 = 12, la somma alternata delle cifre: 23 - 12 = 11. Quindi 85.976 è divisibile per 11.
  • 4. Modi rapidi per determinare se un numero è divisibile per un altro o meno:

  • 2, se l'ultima cifra è divisibile per 2. Se l'ultima cifra di un numero è 0, 2, 4, 6 o 8, il numero è divisibile per 2. Ad esempio, il numero 20: 0 è divisibile per 2, quindi allora 20 deve essere divisibile per 2 (infatti: 20 = 2 × 10).
  • 3, se la somma delle cifre del numero è divisibile per 3. Ad esempio il numero 126: la somma delle cifre è 1 + 2 + 6 = 9, che è divisibile per 3. Allora anche il numero 126 deve essere divisibile per 3 (anzi: 126 = 3 × 42).
  • 4, se le ultime due cifre del numero costituiscono un numero divisibile per 4. Ad esempio 124: 24 è divisibile per 4 (24 = 4 × 6), quindi 124 è anche divisibile per 4 (infatti: 124 = 4 × 31).
  • 5, se l'ultima cifra è divisibile per 5 (l'ultima cifra è 0 o 5). Ad esempio 100: l'ultima cifra, 0, è divisibile per 5, quindi il numero 100 deve essere divisibile per 5 (infatti: 100 = 5 × 20).
  • 6, se il numero è divisibile sia per 2 che per 3. Ad esempio, il numero 24 è divisibile per 2 (24 = 2 × 12) ed è anche divisibile per 3 (24 = 3 × 8), allora deve essere divisibile per 6. Infatti, 24 = 6 × 4.
  • 7, se l'ultima cifra del numero (la cifra dell'unità), raddoppiata, sottratta dal numero formato dal resto delle cifre dà un numero che è divisibile per 7. Il procedimento può essere ripetuto fino ad ottenere un numero più piccolo. Ad esempio, il numero 294 è divisibile per 7? Applichiamo l'algoritmo: 29 - (2 × 4) = 29 - 8 = 21. 21 è divisibile per 3. 21 = 7 × 3. Ma avremmo potuto applicare nuovamente l'algoritmo, questa volta sul numero 21: 2 - (2 × 1) = 2 - 2 = 0. Zero è divisibile per 7, quindi 21 deve essere divisibile per 7. Se 21 è divisibile per 7, allora 294 deve essere divisibile per 7.
  • 8, se le ultime tre cifre del numero costituiscono un numero divisibile per 8. Ad esempio, il numero 2.120: 120 è divisibile per 8 poiché 120 = 8 × 15. Allora anche 2.120 deve essere divisibile per 8. Dimostrazione: se dividiamo i numeri, 2.120 = 8 × 265.
  • 9, se la somma delle cifre del numero è divisibile per 9. Ad esempio, il numero 270 ha la somma delle cifre pari a 2 + 7 + 0 = 9, che è divisibile per 9. Allora anche 270 deve essere divisibile per 9. Infatti: 270 = 9 × 30.
  • 10, se l'ultima cifra del numero è 0. Esempio, 140 è divisibile per 10, poiché 140 = 10 × 14.
  • 11 se la somma alternata delle cifre è divisibile per 11. Ad esempio, il numero 2.915 ha la somma alternata delle cifre pari a: (5 + 9) - (1 + 2) = 14 - 3 = 11, che è divisibile per 11. Allora anche il numero 2.915 deve essere divisibile per 11: 2.915 = 11 × 265.
  • 25, se le ultime due cifre del numero costituiscono un numero divisibile per 25. Ad esempio, il numero formato dalle ultime due cifre del numero 275 è 75, che è divisibile per 25, poiché 75 = 25 × 3. Allora anche 275 deve essere divisibile per 25: 275 = 25 × 11.