9.830 e 26 non sono primi tra loro (coprimi)... se:
Se c'è almeno un numero diverso da 1 che divide i due numeri senza resto. O...
O, in altre parole - se il loro massimo comune divisore, mcd, non è 1.
Calcola il massimo comune divisore, mcd, dei numeri
Metodo 1. La scomposizione in fattori primi (la fattorizzazione in numeri primi):
La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.
9.830 = 2 × 5 × 983
9.830 non è un numero primo, è un numero composto.
26 = 2 × 13
26 non è un numero primo, è un numero composto.
I numeri che sono divisibili solo per 1 e per se stessi sono detti numeri primi. Un numero primo ha solo due divisori: 1 e se stesso.
Un numero composto è un numero naturale che ha almeno un fattore diverso da 1 e se stesso.
Calcola il massimo comune divisore, mcd:
Moltiplica tutti i fattori primi comuni dei due numeri, presi dai loro più piccoli esponenti.
Passaggio 1. Dividi il numero più grande per quello più piccolo:
9.830 : 26 = 378 + 2
Passaggio 2. Dividi il numero più piccolo per il resto dell'operazione precedente:
26 : 2 = 13 + 0
A questo punto, il resto è zero, quindi ci fermiamo:
2 è il numero che stavamo cercando, l'ultimo resto diverso da zero.
Questo è il massimo comune divisore.
mcd (9.830; 26) = 2 ≠ 1
Numeri primi tra loro (coprimi, relativamente primi) (9.830; 26)? No.
mcd (26; 9.830) = 2 ≠ 1