3.524 e 816 non sono primi tra loro (coprimi)... se:
- Se c'è almeno un numero diverso da 1 che divide i due numeri senza resto. O...
- O, in altre parole - se il loro massimo comune divisore, mcd, non è 1.
Calcola il massimo comune divisore, mcd, dei numeri
Metodo 1. La scomposizione in fattori primi (la fattorizzazione in numeri primi):
La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.
3.524 = 22 × 881
3.524 non è un numero primo, è un numero composto.
816 = 24 × 3 × 17
816 non è un numero primo, è un numero composto.
- I numeri che sono divisibili solo per 1 e per se stessi sono detti numeri primi. Un numero primo ha solo due divisori: 1 e se stesso.
- Un numero composto è un numero naturale che ha almeno un fattore diverso da 1 e se stesso.
Calcola il massimo comune divisore, mcd:
Moltiplica tutti i fattori primi comuni dei due numeri, presi dai loro più piccoli esponenti.
Passaggio 1. Dividi il numero più grande per quello più piccolo:
3.524 : 816 = 4 + 260
Passaggio 2. Dividi il numero più piccolo per il resto dell'operazione precedente:
816 : 260 = 3 + 36
Passaggio 3. Dividi il resto del passaggio 1 per il resto del passaggio 2:
260 : 36 = 7 + 8
Passaggio 4. Dividi il resto del passaggio 2 per il resto del passaggio 3:
36 : 8 = 4 + 4
Passaggio 5. Dividi il resto del passaggio 3 per il resto del passaggio 4:
8 : 4 = 2 + 0
A questo punto, il resto è zero, quindi ci fermiamo:
4 è il numero che stavamo cercando, l'ultimo resto diverso da zero.
Questo è il massimo comune divisore.
mcd (3.524; 816) = 4 ≠ 1
I numeri 3.524 e 816 sono primi tra loro (coprimi, relativamente primi)? No.
mcd (816; 3.524) = 4 ≠ 1