105 e 2.857 sono primi tra loro (coprimi)... se:
- Se non esiste un numero diverso da 1 che divide entrambi i numeri senza resto. O...
- In altre parole - se il loro massimo comune divisore, mcd, è 1.
Calcola il massimo comune divisore, mcd, dei numeri
Metodo 1. La scomposizione in fattori primi (la fattorizzazione in numeri primi):
La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.
105 = 3 × 5 × 7
105 non è un numero primo, è un numero composto.
2.857 è un numero primo, non può essere scomposto in fattori primi.
- I numeri che sono divisibili solo per 1 e per se stessi sono detti numeri primi. Un numero primo ha solo due divisori: 1 e se stesso.
- Un numero composto è un numero naturale che ha almeno un fattore diverso da 1 e se stesso.
Calcola il massimo comune divisore, mcd:
Moltiplica tutti i fattori primi comuni dei due numeri, presi dai loro più piccoli esponenti.
Passaggio 1. Dividi il numero più grande per quello più piccolo:
2.857 : 105 = 27 + 22
Passaggio 2. Dividi il numero più piccolo per il resto dell'operazione precedente:
105 : 22 = 4 + 17
Passaggio 3. Dividi il resto del passaggio 1 per il resto del passaggio 2:
22 : 17 = 1 + 5
Passaggio 4. Dividi il resto del passaggio 2 per il resto del passaggio 3:
17 : 5 = 3 + 2
Passaggio 5. Dividi il resto del passaggio 3 per il resto del passaggio 4:
5 : 2 = 2 + 1
Passaggio 6. Dividi il resto del passaggio 4 per il resto del passaggio 5:
2 : 1 = 2 + 0
A questo punto, il resto è zero, quindi ci fermiamo:
1 è il numero che stavamo cercando, l'ultimo resto diverso da zero.
Questo è il massimo comune divisore.
mcd (105; 2.857) = 1
I numeri 105 e 2.857 sono primi tra loro (coprimi, relativamente primi)? Sì.
mcd (105; 2.857) = 1