Calcola e conta tutti i divisori comuni di 115.344 e 432.540. Calcolatrice online

I divisori comuni dei numeri 115.344 e 432.540?

I divisori comuni dei numeri 115.344 e 432.540 sono tutti i divisori del loro 'massimo comune divisore', mcd


Calcola il massimo comune divisore.
Segui i due passaggi seguenti.

1. Eseguiamo la scomposizione in fattori primi dei due numeri:

La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.


115.344 = 24 × 34 × 89
115.344 non è un numero primo ma composto.


432.540 = 22 × 35 × 5 × 89
432.540 non è un numero primo ma composto.



* I numeri naturali che sono divisibili solo per 1 e per se stessi sono detti numeri primi. Un numero primo ha esattamente due divisori: 1 e se stesso.
* Un numero composto è un numero naturale che ha almeno un divisore diverso da 1 e se stesso.



2. Calcola il massimo comune divisore, mcd:

Moltiplica tutti i fattori primi comuni, presi dai loro più piccoli esponenti.


mcd (115.344; 432.540) = 22 × 34 × 89 = 28.836




Come contare il numero di divisori di un numero?

Se un numero N viene scomposto in fattori primi come:
N = am × bk × cz
dove a, b, c sono i fattori primi; m, k, z sono i loro esponenti, numeri naturali, ....


Quindi il numero di divisori del numero N può essere calcolato in questo modo:
n = (m + 1) × (k + 1) × (z + 1)


Nel nostro caso, il numero di divisori viene calcolato come:

n = (2 + 1) × (4 + 1) × (1 + 1) = 3 × 5 × 2 = 30

Ma per calcolare effettivamente i divisori, vedere sotto...

3. Moltiplicare i fattori primi del 'mcd':

Moltiplica i fattori primi coinvolti nella scomposizione in fattori primi del mcd in tutte le loro combinazioni uniche, che danno risultati diversi.


Considera anche gli esponenti dei fattori primi (esempio: 32 = 3 × 3 = 9).


Aggiungi anche il numero 1 all'elenco dei divisori. Tutti i numeri sono divisibili di 1.


Tutti i divisori sono elencati di seguito, in ordine crescente

L'elenco dei divisori:

né primo né composto = 1
fattore primo = 2
fattore primo = 3
22 = 4
2 × 3 = 6
32 = 9
22 × 3 = 12
2 × 32 = 18
33 = 27
22 × 32 = 36
2 × 33 = 54
34 = 81
fattore primo = 89
22 × 33 = 108
2 × 34 = 162
Questo elenco continua di seguito...

... Questo elenco continua dall'alto
2 × 89 = 178
3 × 89 = 267
22 × 34 = 324
22 × 89 = 356
2 × 3 × 89 = 534
32 × 89 = 801
22 × 3 × 89 = 1.068
2 × 32 × 89 = 1.602
33 × 89 = 2.403
22 × 32 × 89 = 3.204
2 × 33 × 89 = 4.806
34 × 89 = 7.209
22 × 33 × 89 = 9.612
2 × 34 × 89 = 14.418
22 × 34 × 89 = 28.836

115.344 e 432.540 hanno 30 divisori comuni:
1; 2; 3; 4; 6; 9; 12; 18; 27; 36; 54; 81; 89; 108; 162; 178; 267; 324; 356; 534; 801; 1.068; 1.602; 2.403; 3.204; 4.806; 7.209; 9.612; 14.418 e 28.836
di cui 3 fattori primi: 2; 3 e 89

Divisori. Divisori comuni. Il massimo comune divisore, mcd

  • Se il numero "t" è un divisore del numero "a", allora nella scomposizione in fattori primi (la fattorizzazione in numeri primi) di "t" incontreremo solo i fattori primi che sono anche coinvolti nella fattorizzazione in primi numeri di "a".
  • Se sono coinvolti esponenti, il valore massimo di un esponente per qualsiasi base di una potenza che si trova nella scomposizione in fattori primi di "t" è al massimo uguale all'esponente della stessa base coinvolta nella scomposizione in fattori primi di "a".
  • Nota: 23 = 2 × 2 × 2 = 8. Il simbolo 23 rappresenta l'operazione di elevamento a potenza. Diciamo 2 alla 3, o 2 elevato alla terza potenza. In questo esempio, 3 è l'esponente e 2 è la base. L'esponente indica quante volte la base viene moltiplicata per se stessa. 23 è la potenza e 8 è il valore della potenza (il risultato dell'operazione di elevamento a potenza).
  • Ad esempio, 12 è un divisore di 120 - il resto è zero quando si divide 120 per 12.
  • Vediamo la scomposizione in fattori primi di entrambi i numeri e notiamo le basi e gli esponenti che si verificano nella scomposizione in fattori primi di entrambi i numeri:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 contains all the prime factors of 12, and all its bases' exponents are higher than those of 12.
  • Se "t" è un divisore comune di "a" e "b", allora la scomposizione in fattori primi di "t" contiene solo i fattori primi comuni coinvolti nella scomposizione in fattori primi sia di "a" che di "b ".
  • Se sono coinvolti esponenti, il valore massimo di un esponente per qualsiasi base di una potenza che si trova nella scomposizione in fattori primi di "t" è al massimo uguale al minimo degli esponenti della stessa base che è coinvolta in la scomposizione in fattori primi sia di "a" che di "b".
  • Ad esempio, 12 è il comun divisore di 48 e 360.
  • Il resto è zero quando si divide 48 o 360 per 12.
  • Qui ci sono la scomposizione in fattori primi dei tre numeri, 12, 48 e 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Si noti che 48 e 360 hanno più divisori: 2, 3, 4, 6, 8, 12, 24. Tra questi, 24 è il massimo comune divisore, mcd, di 48 e 360.
  • Il massimo comun divisore, mcd, dei due numeri, "a" e "b", è il prodotto di tutti i fattori primi comuni coinvolti nella scomposizione in fattori primi sia di "a" che di "b", presi dal esponenti più bassi (potenze).
  • In base a questa regola, il massimo comun divisore, mcd, viene calcolato su più numeri, come mostrato nell'esempio seguente...
  • mcd (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • I fattori primi comuni sono:
  • 2 - il suo esponente più basso (potenza) è: min.(2; 3; 4) = 2
  • 3 - il suo esponente più basso (potenza) è: min.(2; 2; 2) = 2
  • mcd (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Numeri che sono primi tra loro, relativamente primi:
  • Se due numeri "a" e "b" non hanno altri divisori comuni che 1, mcd (a; b) = 1, allora i numeri "a" e "b" sono chiamati primi tra loro (o coprimi).
  • Divisori del mcd
  • Se "a" e "b" non sono primi tra loro, allora ogni comun divisore di "a" e "b" è anche un divisore del massimo comun divisore, mcd, di "a" e "b".