mcm (3.141; 2) = ? Calcola il minimo comune multiplo, mcm, con due metodi: 1) La scomposizione in fattori primi dei numeri e 2) L'algoritmo di Euclide
mcm (3.141; 2) = ?
Metodo 1. La scomposizione in fattori primi (fattorizzazione in numeri primi):
La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.
3.141 = 32 × 349
3.141 non è un numero primo ma composto.
2 è un numero primo, non può essere scomposto in altri fattori primi.
* I numeri naturali che sono divisibili solo per 1 e per se stessi sono detti numeri primi. Un numero primo ha esattamente due divisori: 1 e se stesso.
* Un numero composto è un numero naturale che ha almeno un altro divisore di 1 e se stesso.
Calcola il minimo comune multiplo, mcm:
Moltiplica tutti i fattori primi dei due numeri. Se ci sono fattori primi comuni, vengono presi solo quelli con gli esponenti più grandi.
Il minimo comune multiplo:
mcm (3.141; 2) = 2 × 32 × 349 = 6.282
Metodo 2. L'algoritmo di Euclide:
1. Calcola il massimo comune divisore:
Questo algoritmo prevede il processo di divisione dei numeri e calcolo dei resti.
'a' e 'b' sono i due numeri naturali, 'a' >= 'b'.
Dividi 'a' per 'b' e ottieni il resto dell'operazione, 'r'.
Se 'r' = 0, STOP. 'b' = il mcd di 'a' e 'b'.
Altrimenti: sostituire ('a' di 'b') e ('b' di 'r'). Torna al passaggio sopra.
Passaggio 1. Dividi il numero più grande per quello più piccolo:
3.141 : 2 = 1.570 + 1
Passaggio 2. Dividi il numero più piccolo per il resto dell'operazione precedente:
2 : 1 = 2 + 0
A questo punto, il resto è zero, quindi ci fermiamo:
1 è il numero che stavamo cercando, l'ultimo resto diverso da zero.
Questo è il massimo comune divisore.
Il massimo comune divisore:
mcd (3.141; 2) = 1
2. Calcola il minimo comune multiplo:
Il minimo comune multiplo, Formula:
mcm (a; b) = (a × b) / mcd (a; b)
mcm (3.141; 2) =
(3.141 × 2) / mcd (3.141; 2) =
6.282 / 1 =
6.282
Il minimo comune multiplo:
mcm (3.141; 2) = 6.282 = 2 × 32 × 349
I due numeri non hanno fattori primi in comune:
6.282 = 3.141 × 2
Perché abbiamo bisogno del minimo comune multiplo?
Per sommare, sottrarre o confrontare frazioni, devi prima calcolare le frazioni equivalenti che hanno lo stesso denominatore. Questo comune denominatore non è altro che il minimo comune multiplo dei denominatori delle frazioni.
Per definizione, il minimo comune multiplo di due numeri è il più piccolo numero naturale che è: (1) maggiore di 0 e (2) un multiplo di entrambi i numeri.
Altre operazioni simili con il minimo comune multiplo:
Il minimo comune multiplo, mcm: gli ultimi 5 valori calcolati
Il minimo comune multiplo, mcm (3.141, 2) = ? | 05 Giu, 21:49 CET (UTC +1) |
Il minimo comune multiplo, mcm (5.437.253, 43.498.088) = ? | 05 Giu, 21:48 CET (UTC +1) |
Il minimo comune multiplo, mcm (990, 99) = ? | 05 Giu, 21:48 CET (UTC +1) |
Il minimo comune multiplo, mcm (23, 13) = ? | 05 Giu, 21:47 CET (UTC +1) |
Il minimo comune multiplo, mcm (9, 999) = ? | 05 Giu, 21:47 CET (UTC +1) |
Il minimo comune multiplo, mcm: l'elenco con tutti i valori che sono stati calcolati |
Calcolatore del minimo comune multiplo, mcm
Calcola il minimo comune multiplo dei numeri, MCM:
Method 1: Esegui la scomposizione in fattori primi (fattorizzazione in numeri primi) dei numeri, quindi moltiplica tutti i fattori primi dei numeri per gli esponenti più grandi.
Metodo 2: Algoritmo di Euclide:
mcm (a; b) = (a × b) / mcd (a; b)
Metodo 3: La divisibilità dei numeri.
Il minimo comune multiplo (mcm). Cos'è e come calcolarlo.
- Il numero 60 è un multiplo comune dei numeri 6 e 15 perché 60 è un multiplo di 6 (60 = 6 × 10) e anche un multiplo di 15 (60 = 15 × 4).
- Ci sono infiniti multipli comuni di 6 e 15.
- Se il numero "v" è un multiplo dei numeri "a" e "b", allora tutti i multipli di "v" sono multipli di "a" e "b".
- I multipli comuni di 6 e 15 sono i numeri 30, 60, 90, 120 e così via.
- Di questi, 30 è il più piccolo, 30 è il minimo comune multiplo (mcm) di 6 e 15.
- Nota: Scomposizione in fattori primi, o fattorizzazione in numeri primi, è un procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.
- Se e = mcm (a, b), allora la scomposizione in fattori primi (la fattorizzazione in numeri primi) di "e" deve contenere tutti i fattori primi coinvolti nella scomposizione in fattori primi di "a" e "b" preso dai massimi esponenti (potenze).
- Esempio:
- 40 = 23 × 5
- 36 = 22 × 32
- 126 = 2 × 32 × 7
- mcm (40, 36, 126) = 23 × 32 × 5 × 7 = 2.520
- Nota: 23 = 2 × 2 × 2 = 8. Il simbolo 23 rappresenta l'operazione di elevamento a potenza. Diciamo 2 alla 3, o 2 elevato alla terza potenza. In questo esempio, 3 è l'esponente e 2 è la base. L'esponente indica quante volte la base viene moltiplicata per se stessa. 23 è la potenza e 8 è il valore della potenza (il risultato dell'operazione di elevamento a potenza).
- Un altro esempio di calcolo del minimo comune multiplo, mcm:
- 938 = 2 × 7 × 67
- 982 = 2 × 491
- 743 = è un numero primo e non può essere scomposto in altri fattori primi
- mcm (938, 982, 743) = 2 × 7 × 67 × 491 × 743 = 342.194.594
- Se due o più numeri non hanno fattori comuni (sono primi tra loro, sono numeri coprimi), allora il loro multiplo minimo comune viene calcolato semplicemente moltiplicando i numeri.
- Esempio:
- 6 = 2 × 3
- 35 = 5 × 7
- mcm (6, 35) = 2 × 3 × 5 × 7 = 6 × 35 = 210
Alcuni articoli sui numeri primi