mcm (14.641; 102.487) = ? Minimo comune multiplo

Calcola il minimo comune multiplo, mcm (14.641; 102.487), utilizzando la loro scomposizione in fattori primi, la divisibilità dei numeri o l'algoritmo di Euclide

Metodo 1. La divisibilità dei numeri:

Un numero 'a' è divisibile per un numero 'b' se il resto è zero quando 'a' è diviso per 'b'.


Dividi il numero più grande per quello più piccolo.


Quando dividiamo i nostri numeri, il resto è zero:


102.487 : 14.641 = 7 + 0


⇒ 102.487 = 14.641 × 7


⇒ 102.487 è divisibile per 14.641.


⇒ 102.487 è un multiplo di 14.641.


Il più piccolo multiplo di 102.487 è il numero stesso: 102.487.



Il minimo comune multiplo:
mcm (14.641; 102.487) = 102.487 = 7 × 114
102.487 è un multiplo di 14.641
Scorrere verso il basso per il secondo metodo...

Metodo 2. La scomposizione in fattori primi (fattorizzazione in numeri primi):

La scomposizione in fattori primi (la fattorizzazione in numeri primi) di un numero: procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.


14.641 = 114
14.641 non è un numero primo ma composto.


102.487 = 7 × 114
102.487 non è un numero primo ma composto.


» Calcolatore online. Controlla se un numero è primo o meno. La scomposizione in fattori primi (la fattorizzazione in numeri primi) dei numeri composti

* I numeri naturali che sono divisibili solo per 1 e per se stessi sono detti numeri primi. Un numero primo ha esattamente due divisori: 1 e se stesso.
* Un numero composto è un numero naturale che ha almeno un altro divisore di 1 e se stesso.


Calcola il minimo comune multiplo, mcm:

Moltiplica tutti i fattori primi dei due numeri. Se ci sono fattori primi comuni, vengono presi solo quelli con gli esponenti più grandi.


Il minimo comune multiplo:
mcm (14.641; 102.487) = 7 × 114 = 102.487
102.487 contiene tutti i fattori primi del numero 14.641

Perché abbiamo bisogno del minimo comune multiplo?

Per sommare, sottrarre o confrontare frazioni, devi prima calcolare le frazioni equivalenti che hanno lo stesso denominatore. Questo comune denominatore non è altro che il minimo comune multiplo dei denominatori delle frazioni.

Per definizione, il minimo comune multiplo di due numeri è il più piccolo numero naturale che è: (1) maggiore di 0 e (2) un multiplo di entrambi i numeri.


Il minimo comune multiplo (mcm). Cos'è e come calcolarlo.

  • Il numero 60 è un multiplo comune dei numeri 6 e 15 perché 60 è un multiplo di 6 (60 = 6 × 10) e anche un multiplo di 15 (60 = 15 × 4).
  • Ci sono infiniti multipli comuni di 6 e 15.
  • Se il numero "v" è un multiplo dei numeri "a" e "b", allora tutti i multipli di "v" sono multipli di "a" e "b".
  • I multipli comuni di 6 e 15 sono i numeri 30, 60, 90, 120 e così via.
  • Di questi, 30 è il più piccolo, 30 è il minimo comune multiplo (mcm) di 6 e 15.
  • Nota: Scomposizione in fattori primi, o fattorizzazione in numeri primi, è un procedimento algebrico che permette di riscrivere un numero naturale come prodotto di numeri primi.
  • Se e = mcm (a, b), allora la scomposizione in fattori primi (la fattorizzazione in numeri primi) di "e" deve contenere tutti i fattori primi coinvolti nella scomposizione in fattori primi di "a" e "b" preso dai massimi esponenti (potenze).
  • Esempio:
  • 40 = 23 × 5
  • 36 = 22 × 32
  • 126 = 2 × 32 × 7
  • mcm (40, 36, 126) = 23 × 32 × 5 × 7 = 2.520
  • Nota: 23 = 2 × 2 × 2 = 8. Il simbolo 23 rappresenta l'operazione di elevamento a potenza. Diciamo 2 alla 3, o 2 elevato alla terza potenza. In questo esempio, 3 è l'esponente e 2 è la base. L'esponente indica quante volte la base viene moltiplicata per se stessa. 23 è la potenza e 8 è il valore della potenza (il risultato dell'operazione di elevamento a potenza).
  • Un altro esempio di calcolo del minimo comune multiplo, mcm:
  • 938 = 2 × 7 × 67
  • 982 = 2 × 491
  • 743 = è un numero primo e non può essere scomposto in altri fattori primi
  • mcm (938, 982, 743) = 2 × 7 × 67 × 491 × 743 = 342.194.594
  • Se due o più numeri non hanno fattori comuni (sono primi tra loro, sono numeri coprimi), allora il loro multiplo minimo comune viene calcolato semplicemente moltiplicando i numeri.
  • Esempio:
  • 6 = 2 × 3
  • 35 = 5 × 7
  • mcm (6, 35) = 2 × 3 × 5 × 7 = 6 × 35 = 210